
© 2019 IBM Corporation

A Critical RCU Safety Property Is...

Ease of Use!!!

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center

Member, IBM Academy of Technology

Systor2019, June 5, 2019

© 2019 IBM Corporation3

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Overview

Quick RCU overview

 Isn't RCU a bit low-level to be involved in an exploit?

What was the real problem?

What would a fix even look like???

Possible solutions

Other consequences

Summary

© 2019 IBM Corporation4

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Quick RCU Overview

© 2019 IBM Corporation5

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Primary Use Case: Read-Mostly Linked LIsts

Need fully fresh and consistent data

Stale and inconsistent data OK

10
0%

 U
pd

at
es

10
0%

 R
ea

ds

R
ea

d-
M

os
tly

,
S

ta
le

&
 I

nc
on

si
st

en
t

D
at

a
O

K
(R

C
U

 W
or

ks
 G

re
at

!!!
)

R
ea

d-
M

os
tly

,
N

ee
d

C
on

si
st

en
t

D
at

a
(R

C
U

 W
or

ks
 O

K
)

R
ea

d-
W

rit
e,

N
ee

d
C

on
si

st
en

t
D

at
a

(R
C

U
 M

ig
ht

 B
e

O
K

)

U
pd

at
e-

M
os

tly
,

N
ee

d
F

re
sh

 C
on

si
st

en
t D

at
a

(R
C

U
 N

ot
 S

o
G

oo
d)

1,
2

1. RCU provides ABA protection for update-friendly mechanisms
2. RCU provides bounded wait-free read-side primitives for real-time use

© 2019 IBM Corporation6

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Summary of RCU's Deep Core Primitives

 Read-side primitives:

rcu_read_lock()
– Start an RCU read-side critical section

rcu_read_unlock()
– End an RCU read-side critical section

 Update-side primitive

void synchronize_rcu(void)
– Wait for pre-existing RCU read-side critical sections to complete

The RCU API, 2019 Edition: https://lwn.net/Articles/777036/

© 2019 IBM Corporation7

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

RCU Execution Constraints

Time

r
c
u
_
r
e
a
d
_
l
o
c
k
(
)
;

.
.
.

r
c
u
_
r
e
a
d
_
u
n
l
o
c
k
(
)
;

s
y
n
c
h
r
o
n
i
z
e
_
r
c
u
(
)
;

r
c
u
_
r
e
a
d
_
l
o
c
k
(
)
;

.
.
.

r
c
u
_
r
e
a
d
_
u
n
l
o
c
k
(
)
;

s
y
n
c
h
r
o
n
i
z
e
_
r
c
u
(
)
;

r
c
u
_
r
e
a
d
_
l
o
c
k
(
)
;

.
.
.

r
c
u
_
r
e
a
d
_
u
n
l
o
c
k
(
)
;

s
y
n
c
h
r
o
n
i
z
e
_
r
c
u
(
)
;

r
c
u
_
r
e
a
d
_
l
o
c
k
(
)
;

.
.
.

r
c
u
_
r
e
a
d
_
u
n
l
o
c
k
(
)
;

s
y
n
c
h
r
o
n
i
z
e
_
r
c
u
(
)
;

© 2019 IBM Corporation8

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Toy Implementation of QSBR-Style RCU:
11 Lines of Code, Full Read-Side Performance!!!

 Read-side primitives:
#define rcu_read_lock() __asm__ __volatile__("": : :"memory")
#define rcu_read_unlock() __asm__ __volatile__("": : :"memory")
#define rcu_dereference(p) READ_ONCE(p)

 Update-side primitives
#define rcu_assign_pointer(p, v) smp_store_release(&(p), (v))
void synchronize_rcu(void) /* PREEMPT=n Linux kernel. */
{
 int cpu;

 for_each_online_cpu(cpu)
 sched_setaffinity(current>pid, cpumask_of(cpu));
}

Only 9 of which are needed on sequentially consistent systems...
And some people still insist that RCU is complicated... ;-)

© 2019 IBM Corporation9

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Linux Kernel RCU Has More Than 11 Lines Because:

 Systems with 1000s of CPUs

 Sub-20-microsecond real-time response requirements

 CPUs can come and go (“CPU hotplug”)

 If you disturb idle CPUs. you enrage low-power embedded folks

 Forward progress requirements: callbacks, network DoS attacks

 RCU grace periods must provide extremely strong ordering

 RCU uses the scheduler, and the scheduler uses RCU

 Firmware sometimes lies about the number and age of CPUs

 RCU must work during early boot, even before initialization

 Preemption can happen, even when interrupts are disabled (vCPUs!)

 RCU should identify errors in client code (maintainer self-defense!)

© 2019 IBM Corporation10

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Here is Your Elegant Synchronization Mechanism:

Photo by "Golden Trvs Gol twister", CC by SA 3.0

© 2019 IBM Corporation11

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Here is Your Elegant Synchronization Mechanism
Equipped To Survive In The Linux Kernel:

Photo by Луц Фишер-Лампрехт, CC by SA 3.0

© 2019 IBM Corporation12

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Linux Kernel RCU Has More Than 11 Lines Because:

 Systems with 1000s of CPUs

 Sub-20-microsecond real-time response requirements

 CPUs can come and go (“CPU hotplug”)

 If you disturb idle CPUs. you enrage low-power embedded folks

 Forward progress requirements: callbacks, network DoS attacks

 RCU grace periods must provide extremely strong ordering

 RCU uses the scheduler, and the scheduler uses RCU

 Firmware sometimes lies about the number and age of CPUs

 RCU must work during early boot, even before initialization

 Preemption can happen, even when interrupts are disabled (vCPUs!)

 RCU should identify errors in client code (maintainer self-defense!)

 Multiple “flavors” of RCU

© 2019 IBM Corporation13

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Multiple “Flavors” of RCU

Generic use cases:
rcu_read_lock()
rcu_read_unlock()
synchronize_rcu()

Code subject to denial-of-service attacks:
rcu_read_lock_bh()
rcu_read_unlock_bh()
synchronize_rcu_bh()

 Interactions with non-realtime preempt-disable regions:
rcu_read_lock_sched()
rcu_read_unlock_sched()
synchronize_sched()

This flavor reviewed on past few slides

© 2019 IBM Corporation14

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

There is a Lot More to RCU Implementation and Use

RCU has been used in production for more than 25 years
–And has antecedents going back to 1980 or perhaps even 1963

There is therefore a huge body of RCU-related practice:
–Simple/scalable/real-time/energy-efficient/... implementations
–Combined use of RCU with locking, sequence locking, transactional

memory, non-blocking synchronization, …
–Complex atomic-to-readers updates via transactional memory
–Complex atomic-to-readers updates via Issaquah Challenge
–Interactions with hardware features (interrupts, complex instructions...)
–Formal semantics from several viewpoints

But the preceding slides do provide a few RCU basics
–The paper goes into more detail and contains citations

© 2019 IBM Corporation16

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Isn't RCU a Bit Low-Level to be Involved in a Exploit?

RCU

?

Credit: Awakening Conscience, licensed under the Creative Commons Attribution-Share Alike 4.0 International license

© 2019 IBM Corporation17

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Isn't RCU a Bit Low-Level to be Involved in a CVE?

RCU

Row
Hammer!

DRAM

Credit: Awakening Conscience, licensed under the Creative Commons Attribution-Share Alike 4.0 International license

© 2019 IBM Corporation20

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

If Black Hats Can Hit DRAM (Saying Nothing of
Firmware), They Can Hit RCU!!!

RCU

!

DRAM

Credit: Awakening Conscience, licensed under the Creative Commons Attribution-Share Alike 4.0 International license

© 2019 IBM Corporation21

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

This is No Longer Strictly Theoretical...

© 2019 IBM Corporation25

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Minding My Own Business When This Email Arrived

Date: Sat, 3 Mar 2018 17:50:44 -0800
From: Linus Torvalds <torvalds@linux-foundation.org>
To: Jann Horn <jannh@google.com>, Tejun Heo <tj@kernel.org>, Paul McKenney
 <paulmck@linux.vnet.ibm.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>, security@kernel.org, Al Viro
 <viro@zeniv.linux.org.uk>
Subject: Re: AIO locking bug in lookup_ioctx()
From linus971@gmail.com Sat Mar 3 17:54:39 2018

[Adding Al, Paul and Tejun and to the cc too for various reasons]

On Fri, Mar 2, 2018 at 3:14 PM, Jann Horn <jannh@google.com> wrote:

[. . .]

> I'm not sending a patch because I'm not sure whether the intent here is to
> use RCU, and if so, whether it should be RCU-sched or normal RCU.

It's meant to use regular RCU.

But then in commit a4244454df12 ("percpu-refcount: use RCU-sched
insted of normal RCU") the percpu refcounts were changed to use
RCU-sched.

.. and in the process apparently broke the AIO RCU locking.

Tejun, Paul, please tell me why I'm wrong.

 Linus

security@kernel.org

LKML

Linus Torvalds

© 2019 IBM Corporation29

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

A Prototype RCU-Usage Fix, And Then This Email

Date: Sun, 4 Mar 2018 10:53:54 -0800
From: Linus Torvalds <torvalds@linux-foundation.org>
To: Tejun Heo <tj@kernel.org>
Cc: Jann Horn <jannh@google.com>, Paul McKenney <paulmck@linux.vnet.ibm.com>,
 Benjamin LaHaise <bcrl@kvack.org>, security@kernel.org, Al Viro
 <viro@zeniv.linux.org.uk>
Subject: Re: AIO locking bug in lookup_ioctx()
From linus971@gmail.com Sun Mar 4 10:56:59 2018

[. . .]

I've been confused before, and this time it was an actual security
bug. Admittedly one that is probably almost impossible to ever hit in
practice or mis-use, but still.

I repeat: I really love the traditional RCU, but I *despise* how there
are a million different and confusing versions of it. It clearly
causes real problems.

The only reason for rcu-sched to exist in the first place is that the
regular RCU had been made so much slower with PREEMPT_RCU. In other
words, the proliferation of different insane RCU implementations ends
up feeding on itself, and causing more and more of the proliferation.

Paul, is there really no way out of this mess?

 Linus

Which is the topic of this talk!

Paul, is there really no way out of this mess?

Linus Torvalds

© 2019 IBM Corporation36

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

What Was The Real Problem???

© 2019 IBM Corporation37

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

What Was The Real Problem???
Abuse of RCU...

void reader(void)
{
 rcu_read_lock_sched();
 /*
 * Access RCU-
 * protected data.
 */
 rcu_read_unlock_sched();
}

void updater(void)
{
 /* Remove old data. */
 synchronize_rcu();
 /* Free old data. */
}

© 2019 IBM Corporation40

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

What Was The Real Problem???

void reader(void)
{
 rcu_read_lock_sched();
 /*
 * Access RCU-
 * protected data.
 */
 rcu_read_unlock_sched();
}

void updater(void)
{
 /* Remove old data. */
 synchronize_rcu();
 /* Free old data. */
}

This is about as healthy for your kernel as acquiring the wrong lock!!!
Or accessing the wrong variable.

Or calling the wrong function.
Or...

© 2019 IBM Corporation43

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Why is This a Problem??? Pictorial Form...

rcu_read_lock_sched();

rcu_read_lock() in effect?
No, so report quiescent state!

A B C

Still using B!!!

list_del_rcu(B);

synchronize_rcu();

kfree(B);

rcu_read_unlock_sched()

list_for_each_entry_rcu(...)
 Get reference to B

What are developers
supposed to do

instead?

© 2019 IBM Corporation44

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

What Are Developers Supposed to do Instead?

rcu_read_lock();

rcu_read_lock() in effect?
Yes, so no quiescent state.

A B C

Still using B,
but that's OK!

list_del_rcu(B);

synchronize_rcu();

kfree(B);

rcu_read_unlock()

list_for_each_entry_rcu(...)
 Get reference to B

© 2019 IBM Corporation45

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Or, Alternatively, Adjust the Updater:

rcu_read_lock_sched(); A B C

list_del_rcu(B);

list_for_each_entry_rcu(...)
 Get reference to B

synchronize_sched();

kfree(B);

Still using B,
but that's OK!

Preemption disabled?
Yes, so no quiescent state.

rcu_read_unlock_sched();

© 2019 IBM Corporation48

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Consistency is Required, But That is a Problem!

rcu_read_lock();
rcu_read_unlock();

rcu_read_lock_bh();
rcu_read_unlock_bh();

rcu_read_lock_sched();
rcu_read_unlock_sched();

synchronize_rcu_bh();

synchronize_sched();

synchronize_rcu();

To err is human...
Plus userspace controls content of much kernel data!!!

© 2019 IBM Corporation50

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Desired State From Usability/Security Viewpoint:

rcu_read_lock();
rcu_read_unlock();

rcu_read_lock_bh();
rcu_read_unlock_bh();

rcu_read_lock_sched();
rcu_read_unlock_sched();

synchronize_rcu();

© 2019 IBM Corporation51

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Desired State From Usability/Security Viewpoint
Except That Things Are Never Quite That Simple...

rcu_read_lock();
rcu_read_unlock();

rcu_read_lock_bh();
rcu_read_unlock_bh();
local_bh_disable();
local_bh_enable();
. . .

rcu_read_lock_sched();
rcu_read_unlock_sched();
preempt_disable();
preempt_enable();
local_irq_disable();
local_irq_enable();

. . .

synchronize_rcu();

© 2019 IBM Corporation60

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Possible Solution: Add Explicit RCU Readers
Example: preempt_disable() and preempt_enable()

preempt_disable()

preempt_enable()

preempt_disable()

rcu_read_lock()

preempt_enable()

rcu_read_unlock()

For more detail, see paper and linux.conf.au presentation:
Slides: http://www.rdrop.com/users/paulmck/RCU/cve.2019.01.23e.pdf
Video: https://www.youtube.com/watch?v=hZX1aokdNiY

© 2019 IBM Corporation65

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Try easy approaches first!!! Add RCU readers:
–Make local_bh_disable() do rcu_read_lock() just before returning and

local_bh_enable() do rcu_read_unlock() just after being called
–Make preempt_disable() do rcu_read_lock() just before returning and

preempt_enable() do rcu_read_unlock() just after being called
–Make local_irq_disable() do rcu_read_lock() just before returning and

local_irq_enable() do rcu_read_unlock() just after being called
• And same for the many other disable/enable functions

How many people find this a bit scary?

So test it first: Instead of rcu_read_lock(), increment counter
and instead of rcu_read_unlock(), decrement same counter

–Complain if counter non-zero where everything is enabled

Possible Solution: Add Explicit RCU Readers
Too Bad About All That Fastpath Assembly Code...

FailFail

© 2019 IBM Corporation76

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Just Globally Count Deferral Reasons!

For example, rcu_note_context_switch() is a quiescent state

Simple approach?

void synchronize_rcu(void)
{
 atomic_set(&nqsneeded, num_online_cpus());
 wait_event(gp_wait, nqsneeded == 0);
}

void rcu_note_context_switch(bool preempt)
{
 If (atomic_dec_and_test(&nqsneeded))
 wake_up(&gp_wait);
}

FailFail
CPU hotplug, scalability,CPU hotplug, scalability,

multiple quiescent states,multiple quiescent states,
......

First bug report against RCU on 512-CPU system in 2004...

© 2019 IBM Corporation93

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Defer Reporting of Quiescent States at Reader End

Debugging is twice as hard as writing
the code in the first place. Therefore, if

you write the code as cleverly as
possible, you are, by definition, not

smart enough to debug it.
Brian W. Kernighan

For that matter, am I even smart enough to test it???

Back to the drawing board...

FailFail
RCU read-side critical sectionsRCU read-side critical sections

linked by preempt-disable...linked by preempt-disable...
Excessive complexity!!!Excessive complexity!!!

© 2019 IBM Corporation94

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Possible Solution: Defer rcu_read_unlock() Dequeue

© 2019 IBM Corporation97

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Preempted Tasks Queued on Leaf rcu_node Structure
Task A Preempted, Blocks Current Grace Period

->qsmask

->qsmask
->blkd_tasks
->gp_tasks

->qsmask
->blkd_tasks
->gp_tasks

->cpu_no_qs ->cpu_no_qs->cpu_no_qs ->cpu_no_qs

rcu_node

rc
u_

da
ta

© 2019 IBM Corporation98

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Preempted Tasks Queued on Leaf rcu_node Structure
Task A Preempted, Blocks Current Grace Period

->qsmask

->qsmask
->blkd_tasks
->gp_tasks

->qsmask
->blkd_tasks
->gp_tasks

->cpu_no_qs ->cpu_no_qs->cpu_no_qs ->cpu_no_qs

rcu_node

rc
u_

da
ta

Task A

CPU switches to Task B

© 2019 IBM Corporation99

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Preempted Tasks Queued on Leaf rcu_node Structure
Task B's priority is lowered, Task A resumes

->qsmask

->qsmask
->blkd_tasks
->gp_tasks

->qsmask
->blkd_tasks
->gp_tasks

->cpu_no_qs ->cpu_no_qs->cpu_no_qs ->cpu_no_qs

rcu_node

rc
u_

da
ta

Task A

© 2019 IBM Corporation100

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Preempted Tasks Queued on Leaf rcu_node Structure
Task A Blocks Current Grace Period, Task B Does Not

->qsmask

->qsmask
->blkd_tasks
->gp_tasks

->qsmask
->blkd_tasks
->gp_tasks

->cpu_no_qs ->cpu_no_qs->cpu_no_qs ->cpu_no_qs

rcu_node

rc
u_

da
ta

Task B

Task A

© 2019 IBM Corporation101

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Preempted Tasks Queued on Leaf rcu_node Structure
Task A Executes rcu_read_unlock()

->qsmask

->qsmask
->blkd_tasks
->gp_tasks

->qsmask
->blkd_tasks
->gp_tasks

->cpu_no_qs ->cpu_no_qs->cpu_no_qs ->cpu_no_qs

rcu_node

rc
u_

da
ta

Task B

Task A

© 2019 IBM Corporation102

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Preempted Tasks Queued on Leaf rcu_node Structure
Task A No Longer Blocks Current Grace Period

->qsmask

->qsmask
->blkd_tasks
->gp_tasks

->qsmask
->blkd_tasks
->gp_tasks

->cpu_no_qs ->cpu_no_qs->cpu_no_qs ->cpu_no_qs

rcu_node

rc
u_

da
ta

Task B

Task A

Task A must remove itself from ->blkd_tasks and update ->gp_tasks
But there is no next task, so set ->gp_tasks to NULL

© 2019 IBM Corporation103

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Preempted Tasks Queued on Leaf rcu_node Structure
Grace Period No Longer Blocked by Preempted Task

->qsmask

->qsmask
->blkd_tasks
->gp_tasks

->qsmask
->blkd_tasks
->gp_tasks

->cpu_no_qs ->cpu_no_qs->cpu_no_qs ->cpu_no_qs

rcu_node

rc
u_

da
ta

Task B

Task A has removed itself from ->blkd_tasks and updated ->gp_tasks

© 2019 IBM Corporation104

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Which Breaks This Larger Example!!!

rcu_read_lock();

do_something_1();

preempt_disable();

do_something_2();

rcu_read_unlock();

do_something_3();

rcu_read_lock();

do_something_4();

preempt_enable();

do_something_5();

rcu_read_unlock();

This rcu_read_lock() must block the
grace period, but won't because of
the prior rcu_read_unlock()!!!

© 2019 IBM Corporation105

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Which Breaks This Larger Example!!!

rcu_read_lock();

do_something_1();

preempt_disable();

do_something_2();

rcu_read_unlock();

do_something_3();

rcu_read_lock();

do_something_4();

preempt_enable();

do_something_5();

rcu_read_unlock();

This rcu_read_lock() must block the
grace period, but won't because of
the prior rcu_read_unlock()!!!

Should the prior rcu_read_unlock()
avoid dequeuing based on
preemption having been disabled?

© 2019 IBM Corporation109

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

How Would Deferring Dequeuing Change Quiescent
State Handling?

Quiescent state:
–If CPU's rcu_data structure's ->cpu_no_qs flag is set, clear it and

proceed to leaf rcu_node
–If CPU's bit in leaf rcu_node structure's ->qsmask is set, clear it and if all

bits are clear and if ->gp_tasks is NULL, proceed to root rcu_node
–If corresponding bit in root rcu_node's ->qsmask is set, clear it, and if all

bits are now clear, end of grace period!

 “Special” situation in rcu_read_unlock():
–Only if fully enabled, remove self from ->blkd_tasks, adjust ->gp_tasks

if references self
–If ->gp_tasks now NULL and all ->qsmask bits are clear, proceed to root

rcu_node and handle it as above

Periodically check for deferred quiescent states
–Dequeue task, if needed, and report deferred quiescent state

© 2019 IBM Corporation112

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Does This Really Work on That Example???

rcu_read_lock();

do_something_1();

preempt_disable();

do_something_2();

rcu_read_unlock();

do_something_3();

rcu_read_lock();

do_something_4();

preempt_enable();

do_something_5();

rcu_read_unlock();

Preemption disabled, so don't
dequeue the task...

… which means that the task is
still queued, and thus already
blocking the grace period!!!

One big reader, as required!!!

© 2019 IBM Corporation117

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Defer rcu_read_unlock() Current-Task Dequeue
(Part of a Page, Down from 8+ to 3 Pages Total!!!)

© 2019 IBM Corporation118

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

The Full Set of Commits

1.3e3100989869 rcu: Defer reporting RCU-preempt quiescent states when disabled
2.27c744e32a9a rcu: Allow processing deferred QSes for exiting RCU-preempt readers
3.fcc878e4dfb7 rcu: Remove now-unused ->b.exp_need_qs field from the rcu_special union
4.d28139c4e967 rcu: Apply RCU-bh QSes to RCU-sched and RCU-preempt when safe
5.ba1c64c27239 rcu: Report expedited grace periods at context-switch time
6.fced9c8cfe6b rcu: Avoid resched_cpu() when rescheduling the current CPU
7.05f415715ce4 rcu: Speed up expedited GPs when interrupting RCU reader
8.94fb70aa876b rcu: Make expedited IPI handler return after handling critical section

© 2019 IBM Corporation122

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

In Practice, Lots of Preparatory and Cleanup Work

Merge grace-period counters: Reduce lock contention (35)

Funnel-lock grace-period start: Reduce lock contention (3)

Find and fix pre-existing intermittent rcutorture failures (15)
–Want RCU squeaky clean before taking a meataxe to it

Add quite a bit of debugging code (17)

Add rcutorture quiescent-state deferral tests (42)

Remove RCU-bh & RCU-sched and then simplify!!! (107)
–And remove rcutorture scenarios testing RCU-bh and RCU-sched

Drive-by optimizations (17)

Additional cleanup as it becomes apparent (???)

© 2019 IBM Corporation139

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Near Misses: Saved by Community Processes!

0day finds a few issues
–Build issue: Idle-loop entry change
–Build issue: Definitions for 32-bit kernels

• And many other fat-finger issues on various architectures
–Boot-time issue: Infinite recursion through synchronize_rcu()
–Runtime issue with rcu_read_unlock_special() recursion

• Prompting a change in rcutorture testing scenarios
–Runtime issue: Intermittent deadlock
–Runtime issue: Intermittent spinlock recursion
–Runtime issue: RCU readers from idle (several of these)
–Runtime issue: Overly aggressive rcutorture testing
–And much else besides

Good review comments: Joel Fernandes now official reviewer

© 2019 IBM Corporation142

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Other Consequences

What effect did this work have on RCU's reliability?

According to rcutorture, it is actually more reliable
–And rcutorture has become significantly more nasty
–Which is a very good thing

But this work did introduce some bugs

Estimate reliability based on proxy: Median age of RCU code
–One of those rare situations where older is usually more reliable...

© 2019 IBM Corporation145

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Median Age of RCU Code

30% decrease in median age: Should we be worried?

© 2019 IBM Corporation147

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Median Age of RCU Code

But longer-term trend is not too bad...
But there are undoubtedly still many bugs to find!!!

Tree SRCU

This work

Simplifications

© 2019 IBM Corporation151

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Recently Fixed Bugs and RCU Versions

Reported by Thomas Gleixner and Sebastian Andrzej Siewior
–Unnecessary preempt_disable, unrelated bug (v4.19 in 2018)

Reported by David Woodhouse and Marius Hillenbrand
–RCU stalled by KVM, unrelated bug (v4.12 in 2017)

Dennis Krein
–SRCU omitted lock from Tree SRCU rewrite (v4.12 in 2017)

Sebastian Andrzej Siewior
–SRCU -rt issue from Tree SRCU rewrite (v4.12 in 2017)

Jun Zhang, Bo He, Jin Xiao, and Jie A Bai
–Unrelated self-wakeup bug (v3.16 in 2014)

Reported by Sebastian Andrzej Siewior
–Failure of rcutorture to test GP hangs after offline (v3.3 in 2011)

© 2019 IBM Corporation152

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Expectations

More forward-progress bugs due to higher utilizations
–But this is due to changes in workload, not RCU flavor consolidation
–Nevertheless, area of current focus

At least one more Tree SRCU bug
–Tree SRCU seems to have doubled RCU's bug rate, give or take

Several RCU flavor consolidation bugs
–Not counting various nits
–Update: Some changes required to accommodate -rt functionality

The usual influx of bugs that I don't expect at all...

© 2019 IBM Corporation153

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Expectations

More forward-progress bugs due to higher utilizations
–But this is due to changes in workload, not RCU flavor consolidation
–Nevertheless, area of current focus

At least one more Tree SRCU bug
–Tree SRCU seems to have doubled RCU's bug rate, give or take

Several RCU flavor consolidation bugs
–Not counting various nits
–Update: Some changes required to accommodate -rt functionality

The usual influx of bugs that I don't expect at all...

Because Murphy Never Sleeps!!!

© 2019 IBM Corporation154

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Why Not Be More Proactive for Expected RCU Bugs?

© 2019 IBM Corporation155

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Why Not Be More Proactive for Expected RCU Bugs?

Formal verification in RCU regression testing for the win?

© 2019 IBM Corporation156

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Why Not Be More Proactive for Expected RCU Bugs?

Formal verification in RCU regression testing for the win?
–Lihao Liang et al., “Verification of the Tree-Based Hierarchical Read-

Copy Update in the Linux Kernel”, https://arxiv.org/abs/1610.03052
• Based on CBMC, which uses a SAT solver

–Kokologiannakis et al., “Stateless Model Checking of the Linux
Kernel’s Hierarchical Read-Copy-Update (Tree RCU)”
https://michaliskok.github.io/papers/spin2017-rcu.pdf

• Based on Nidhugg, which uses partial-order reduction
–Roy, “rcutorture: Add CBMC-based formal verification for SRCU”

Linux-kernel commit 418b2977b343
• Based on CBMC

How did these efforts work out?

© 2019 IBM Corporation157

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

How Did Formal Verification Work Out For RCU?

Needed to configure RCU down to minimal code size
–No CPU hotplug, no idle loop, no preemption, no callback offloading, ...

Portions of RCU code extracted and placed into test harness
–Both tools successfully ingested Linux-kernel C code: Very cool!!!
–Both tools are just fine with non-linearizable concurrent algorithms
–Both tools handle several weakish memory models

Reported most—or even all—injected bugs
–Yes, even formal verification tools must be validated!!!
–We are all capable of writing printf(“Verified\n”), after all!!!

© 2019 IBM Corporation158

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

How Did Formal Verification Work Out For RCU?

Needed to configure RCU down to minimal code size
–No CPU hotplug, no idle loop, no preemption, no callback offloading, ...

Portions of RCU code extracted and placed into test harness
–Both tools successfully ingested Linux-kernel C code: Very cool!!!
–Both tools are just fine with non-linearizable concurrent algorithms
–Both tools handle several weakish memory models

Reported most—or even all—injected bugs
–Yes, even formal verification tools must be validated!!!
–We are all capable of writing printf(“Verified\n”), after all!!!

But neither found any bugs that I was not already aware of!!!
–That challenge is still open:

• https://paulmck.livejournal.com/46993.html

© 2019 IBM Corporation159

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Impressive Progress, But For FV Regression Testing:

(1) Either automatic translation or no translation required
– Automatic discarding of irrelevant portions of the code
– Manual translation provides opportunity for human error!

(2) Correctly handle environment, including memory model
– The QRCU validation benchmark is an excellent cautionary tale

(3) Reasonable memory and CPU overhead
– Bugs must be located in practice as well as in theory
– Linux-kernel RCU is 15KLoC (plus 5KLoC tests) and release cycles are short

(4) Map to source code line(s) containing the bug
– “Something is wrong somewhere” is not helpful: I already know bugs exist
– One bug reported just yesterday!!!

(5) Modest input outside of source code under test
– Preferably glean much of the specification from the source code itself (empirical spec!)
– Specifications are large bodies of software and can therefore have their own bugs

(6) Find relevant bugs
– Low false-positive rate, weight towards likelihood of occurrence (fixes create bugs!)
– For example, interesting recent work bounds number of preemptions

© 2019 IBM Corporation160

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Summary

© 2019 IBM Corporation161

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Summary

Making your software do exactly what you want it to is a
difficult undertaking

–And it is insufficient: You might be confused about requirements

Ease-of-use issues can result in security holes
–Testing and reliability statistics are subject to misuse “Black Swans”
–On the other hand, fixing these issues can simplify your code

RCU currently seems to be in pretty good shape
–But recent change means opportunity for formal verification
–And there is some risk due to lack of synchronize_sched()
–And real-time kernels don't like overlapping disable regions

© 2019 IBM Corporation162

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Summary

Making your software do exactly what you want it to is a
difficult undertaking

–And it is insufficient: You might be confused about requirements

Ease-of-use issues can result in security holes
–Testing and reliability statistics are subject to misuse “Black Swans”
–On the other hand, fixing these issues can simplify your code

RCU currently seems to be in pretty good shape
–But recent change means opportunity for formal verification
–And there is some risk due to lack of synchronize_sched()
–And real-time kernels don't like overlapping disable regions

Famous last words...

© 2019 IBM Corporation163

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2019 IBM Corporation164

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Questions?

© 2019 IBM Corporation165

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Publication of And Subscription to New Data

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

Acptr

© 2019 IBM Corporation166

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Publication of And Subscription to New Data

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

A cptr

->a=?
->b=?
->c=?

cptr

km
al

lo
c(

)

tmp

© 2019 IBM Corporation167

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Publication of And Subscription to New Data

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

A cptr

->a=?
->b=?
->c=?

cptrcptr

in
iti

al
iz

at
io

n

km
al

lo
c(

)

->a=1
->b=2
->c=3

tmp tmp

© 2019 IBM Corporation168

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Publication of And Subscription to New Data

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

A cptr

->a=?
->b=?
->c=?

cptrcptr cptr

in
iti

al
iz

at
io

n

km
al

lo
c(

)

rc
u_

as
si

gn
_p

oi
nt

er
(c

pt
r,p

)

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

p
=

 r
cu

_d
er

ef
er

en
ce

(c
pt

r)

readertmp tmp tmp

© 2019 IBM Corporation169

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

Publication of And Subscription to New Data

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

A cptr

->a=?
->b=?
->c=?

cptrcptr cptr

in
iti

al
iz

at
io

n

km
al

lo
c(

)

rc
u_

as
si

gn
_p

oi
nt

er
(c

pt
r,p

)

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

p
=

 r
cu

_d
er

ef
er

en
ce

(c
pt

r)

readertmp tmp tmp

But if all we do is add, we have a big memory leak!!!But if all we do is add, we have a big memory leak!!!

© 2019 IBM Corporation170

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

RCU Removal From Linked List

 Combines waiting for readers and multiple versions:

A

B

C

boa

cat

gnu

One Version

Readers?

© 2019 IBM Corporation171

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

A

B

C

boa

cat

gnu

boa

cat

gnu

lis
t_

de
l_

rc
u(

)

One Version Two Versions

Readers? Readers?
Only old ones!

© 2019 IBM Corporation172

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

A

B

C

boa

cat

gnu

boa

cat

gnu

boa

cat

gnu
sy

nc
hr

on
iz

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

One Version Two Versions One Version

Readers? Readers?
Only old ones!

No readers

© 2019 IBM Corporation173

A Critical RCU Safety Property Is... Ease of Use!, June 5, 2019

RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

– Writer can then free the cat's element (kfree())

A

B

C

boa

cat

gnu

boa

cat

gnu

boa

cat

gnu

boa

gnu
sy

nc
hr

on
iz

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

One Version Two Versions One Version

Readers?

One Version

kf
re

e(
)

Readers?
Only old ones!

No readers

	IBM Presentation Template Full Version
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 20
	Slide 21
	Slide 25
	Slide 29
	Slide 36
	Slide 37
	Slide 40
	Slide 43
	Slide 44
	Slide 45
	Slide 48
	Slide 50
	Slide 51
	Slide 60
	Slide 65
	Slide 76
	Slide 93
	Slide 94
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 109
	Slide 117
	Slide 118
	Slide 122
	Slide 139
	Slide 142
	Slide 145
	Slide 147
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173

